.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples/umats/ELIST.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_umats_ELIST.py: Transversely Isotropic Elasticity Example ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. GENERATED FROM PYTHON SOURCE LINES 5-11 .. code-block:: Python import numpy as np from simcoon import simmit as sim import matplotlib.pyplot as plt import os .. GENERATED FROM PYTHON SOURCE LINES 12-50 In transversely isotropic elastic materials, there is a single axis of symmetry. The material behaves isotropically in the plane perpendicular to this axis (the transverse plane). Eight parameters are required: 1. The axis of symmetry (1, 2, or 3) 2. The longitudinal Young modulus :math:`E_L` 3. The transverse Young modulus :math:`E_T` 4. The Poisson ratio in the transverse-longitudinal plane :math:`\nu_{TL}` 5. The Poisson ratio in the transverse-transverse plane :math:`\nu_{TT}` 6. The shear modulus in the longitudinal-transverse plane :math:`G_{LT}` 7. The coefficient of thermal expansion in the longitudinal direction :math:`\alpha_L` 8. The coefficient of thermal expansion in the transverse direction :math:`\alpha_T` The elastic stiffness tensor for a transversely isotropic material with axis 1 as the symmetry axis is written in the Voigt notation formalism as: .. math:: \mathbf{L} = \begin{pmatrix} L_{11} & L_{12} & L_{12} & 0 & 0 & 0 \\ L_{12} & L_{22} & L_{23} & 0 & 0 & 0 \\ L_{12} & L_{23} & L_{22} & 0 & 0 & 0 \\ 0 & 0 & 0 & G_{TT} & 0 & 0 \\ 0 & 0 & 0 & 0 & G_{LT} & 0 \\ 0 & 0 & 0 & 0 & 0 & G_{LT} \end{pmatrix} where :math:`G_{TT} = E_T / (2(1+\nu_{TT}))` is the shear modulus in the transverse plane. The thermal expansion tensor is: .. math:: \boldsymbol{\alpha} = \begin{pmatrix} \alpha_L & 0 & 0 \\ 0 & \alpha_T & 0 \\ 0 & 0 & \alpha_T \end{pmatrix} .. GENERATED FROM PYTHON SOURCE LINES 50-92 .. code-block:: Python umat_name = "ELIST" # 5 character code for transversely isotropic elastic subroutine nstatev = 1 # Number of internal variables # Material parameters axis = 1 # Symmetry axis E_L = 4500.0 # Longitudinal Young's modulus (MPa) E_T = 2300.0 # Transverse Young's modulus (MPa) nu_TL = 0.05 # Poisson ratio (transverse-longitudinal) nu_TT = 0.3 # Poisson ratio (transverse-transverse) G_LT = 2700.0 # Shear modulus (longitudinal-transverse) alpha_L = 1.0e-5 # Thermal expansion (longitudinal) alpha_T = 2.5e-5 # Thermal expansion (transverse) psi_rve = 0.0 theta_rve = 0.0 phi_rve = 0.0 solver_type = 0 corate_type = 1 props = np.array([axis, E_L, E_T, nu_TL, nu_TT, G_LT, alpha_L, alpha_T]) path_data = "data" path_results = "results" pathfile = "ELIST_path.txt" outputfile = "results_ELIST.txt" sim.solver( umat_name, props, nstatev, psi_rve, theta_rve, phi_rve, solver_type, corate_type, path_data, path_results, pathfile, outputfile, ) .. GENERATED FROM PYTHON SOURCE LINES 93-97 Plotting the results ---------------------- We plot the stress-strain curve in the loading direction (direction 1). .. GENERATED FROM PYTHON SOURCE LINES 97-115 .. code-block:: Python outputfile_macro = os.path.join(path_results, "results_ELIST_global-0.txt") fig = plt.figure() e11, e22, e33, e12, e13, e23, s11, s22, s33, s12, s13, s23 = np.loadtxt( outputfile_macro, usecols=(8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), unpack=True, ) plt.grid(True) plt.xlabel(r"Strain $\varepsilon_{11}$") plt.ylabel(r"Stress $\sigma_{11}$ (MPa)") plt.plot(e11, s11, c="blue", label="Loading direction 1") plt.legend(loc="best") plt.show() .. image-sg:: /examples/umats/images/sphx_glr_ELIST_001.png :alt: ELIST :srcset: /examples/umats/images/sphx_glr_ELIST_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.056 seconds) .. _sphx_glr_download_examples_umats_ELIST.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: ELIST.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: ELIST.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: ELIST.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_