fedoo.problem.Newmark

class Newmark(StiffnessAssembling, MassAssembling, Beta, Gamma, TimeStep, DampingAssembling=None, name='MainProblem')
__init__(StiffnessAssembling, MassAssembling, Beta, Gamma, TimeStep, DampingAssembling=None, name='MainProblem')

Methods

Newmark.GetElasticEnergy()

returns : sum(0.5 * U.transposed * K * U)

Newmark.GetExternalForceWork()

with (KU + CU_dot + MU_dot_dot) = Fext this function returns sum(Fext.(U-Uold))

Newmark.GetKineticEnergy()

returns : 0.5 * Udot.transposed * M * Udot

Newmark.GetNodalElasticEnergy()

returns : 0.5 * K * U .

Newmark.GetVelocity()

Newmark.SetInitialAcceleration(name, value)

name is the name of the associated variable (generaly 'DispX', 'DispY' or 'DispZ') value is an array containing the initial acceleration of each nodes

Newmark.SetInitialDisplacement(name, value)

name is the name of the associated variable (generaly 'DispX', 'DispY' or 'DispZ') value is an array containing the initial displacement of each nodes

Newmark.SetInitialVelocity(name, value)

name is the name of the associated variable (generaly 'DispX', 'DispY' or 'DispZ') value is an array containing the initial velocity of each nodes

Newmark.SetRayleighDamping(alpha, beta)

Compute the damping matrix from the Rayleigh's model: [C] = alpha*[M] + beta*[K]

Newmark.add_output(filename, assemblyname, ...)

Newmark.apply_boundary_conditions([t_fact, ...])

Newmark.get_A()

Newmark.get_Acceleration()

Newmark.get_B()

Newmark.get_D()

Newmark.get_DampingPower()

returns : Udot.transposed * C * Udot The damping disspated energy can be approximated by: Edis = DampingPower * TimeStep or Edis = scipy.integrate.cumtrapz(t,DampingPower)

Newmark.get_X()

Newmark.get_Xdot()

Newmark.get_Xdotdot()

Newmark.get_active()

Return the active Problem.

Newmark.get_all()

Return the list of all problems.

Newmark.get_disp([name])

Newmark.get_dof_solution([name])

Newmark.get_ext_forces([name, include_mpc])

Return the nodal Forces in global coordinates system.

Newmark.get_results(assemb, output_list[, ...])

Newmark.init_bc_start_value()

Newmark.initialize([t0])

Newmark.make_active()

Define the problem instance as the active Problem.

Newmark.save_results([iterOutput])

Newmark.set_A(A)

Newmark.set_B(B)

Newmark.set_D(D)

Newmark.set_active(name)

Define the active Problem from its name.

Newmark.set_dof_solution(name, value)

Newmark.set_solver([solver])

Define the solver for the linear system resolution.

Newmark.solve(**kargs)

Newmark.update()

Newmark.updateStiffness(StiffnessAssembling)

Newmark.update_boundary_conditions()

Newmark.active

Newmark.n_dof

Newmark.name

Return the name of the Problem.

Newmark.results

Newmark.solver

Return the current solver used for the problem.

Newmark.space

Return the ModelingSpace associated to the Problem if defined.

Newmark.bc

Boundary conditions defined on the problem.