fedoo.problem.Newmark
- class Newmark(StiffnessAssembling, MassAssembling, Beta, Gamma, TimeStep, DampingAssembling=None, name='MainProblem')
- __init__(StiffnessAssembling, MassAssembling, Beta, Gamma, TimeStep, DampingAssembling=None, name='MainProblem')
Methods
returns : sum(0.5 * U.transposed * K * U)
with (KU + CU_dot + MU_dot_dot) = Fext this function returns sum(Fext.(U-Uold))
returns : 0.5 * Udot.transposed * M * Udot
returns : 0.5 * K * U .
Newmark.SetInitialAcceleration
(name, value)name is the name of the associated variable (generaly 'DispX', 'DispY' or 'DispZ') value is an array containing the initial acceleration of each nodes
Newmark.SetInitialDisplacement
(name, value)name is the name of the associated variable (generaly 'DispX', 'DispY' or 'DispZ') value is an array containing the initial displacement of each nodes
Newmark.SetInitialVelocity
(name, value)name is the name of the associated variable (generaly 'DispX', 'DispY' or 'DispZ') value is an array containing the initial velocity of each nodes
Newmark.SetRayleighDamping
(alpha, beta)Compute the damping matrix from the Rayleigh's model: [C] = alpha*[M] + beta*[K]
Newmark.add_output
(filename, assemblyname, ...)Newmark.apply_boundary_conditions
([t_fact, ...])returns : Udot.transposed * C * Udot The damping disspated energy can be approximated by: Edis = DampingPower * TimeStep or Edis = scipy.integrate.cumtrapz(t,DampingPower)
Return the active Problem.
Return the list of all problems.
Newmark.get_disp
([name])Newmark.get_dof_solution
([name])Newmark.get_ext_forces
([name, include_mpc])Return the nodal Forces in global coordinates system.
Newmark.get_results
(assemb, output_list[, ...])Newmark.initialize
([t0])Define the problem instance as the active Problem.
Newmark.save_results
([iterOutput])Newmark.set_active
(name)Define the active Problem from its name.
Newmark.set_dof_solution
(name, value)Newmark.set_solver
([solver])Define the solver for the linear system resolution.
Newmark.solve
(**kargs)Newmark.updateStiffness
(StiffnessAssembling)Return the name of the Problem.
Return the current solver used for the problem.
Return the ModelingSpace associated to the Problem if defined.
Boundary conditions defined on the problem.