fedoo.problem.NonLinear

class NonLinear(assembly, nlgeom=False, name='MainProblem')
__init__(assembly, nlgeom=False, name='MainProblem')

Methods

NonLinear.NewtonRaphsonError()

Compute the error of the Newton-Raphson algorithm For Force and Work error criterion, the problem must be updated (Update method).

NonLinear.NewtonRaphsonIncrement()

NonLinear.add_global_dof(variable_names[, ...])

Add global degrees of freedom to the problem.

NonLinear.add_output(filename, assembly[, ...])

Add output requirement for automatic saving during nlsolve.

NonLinear.apply_boundary_conditions([...])

NonLinear.change_assembly(assembling[, update])

Modify the assembly associated to the problem and update the problem (see Assembly.update for more information)

NonLinear.elastic_prediction()

NonLinear.get_A()

NonLinear.get_B()

NonLinear.get_D()

NonLinear.get_X()

NonLinear.get_active()

Return the active Problem.

NonLinear.get_all()

Return the list of all problems.

NonLinear.get_disp([name])

Return the displacement components.

NonLinear.get_dof_solution([name])

NonLinear.get_ext_forces([name, include_mpc])

Return the nodal Forces in global coordinates system.

NonLinear.get_results(*args, **kargs)

Extract some results from the current problem.

NonLinear.get_rot([name])

Return the rotation components.

NonLinear.get_temp()

Return the nodal temperature field.

NonLinear.init_bc_start_value()

NonLinear.initialize()

NonLinear.make_active()

Define the problem instance as the active Problem.

NonLinear.nlsolve([dt, update_dt, tmax, t0, ...])

Solve the non linear problem using the newton-raphson algorithm.

NonLinear.reset()

NonLinear.save_results([iterOutput])

NonLinear.set_A(A)

NonLinear.set_B(B)

NonLinear.set_D(D)

NonLinear.set_X(value)

NonLinear.set_active(name)

Define the active Problem from its name.

NonLinear.set_dof_solution(name, value)

NonLinear.set_nr_criterion([criterion])

Define the convergence criterion of the newton raphson algorith.

NonLinear.set_solver([solver])

Define the solver for the linear system resolution.

NonLinear.set_start([save_results, callback])

NonLinear.solve(**kargs)

NonLinear.solve_time_increment([...])

NonLinear.to_start()

NonLinear.update([compute, updateWeakForm])

Assemble the matrix including the following modification:

NonLinear.updateA()

NonLinear.updateD([start])

NonLinear.update_boundary_conditions()

NonLinear.active

NonLinear.assembly

NonLinear.global_dof

NonLinear.n_dof

NonLinear.n_global_dof

NonLinear.n_iter

Return the number of iterations made to solve the problem.

NonLinear.n_node_dof

NonLinear.name

Return the name of the Problem.

NonLinear.results

NonLinear.solver

Return the current solver used for the problem.

NonLinear.space

Return the ModelingSpace associated to the Problem if defined.

NonLinear.t_fact

Adimensional time used for boundary conditions.

NonLinear.t_fact_old

Previous adimensional time for boundary conditions.

NonLinear.nr_parameters

Parameters to set the newton raphson algorithm: * 'err0': The reference error. Default is None (automatically computed) * 'criterion': Type of convergence test in ['Displacement', 'Force', 'Work']. Default is 'Displacement'. * 'tol': Error tolerance for convergence. Default is 1e-3. * 'max_subiter': Number of nr iteration before returning a convergence error. Default is 5. * 'norm_type': define the norm used to test the criterion Use numpy.inf for the max value. Default is 2.

NonLinear.bc

Boundary conditions defined on the problem.