fedoo.weakform.BeamEquilibrium
- class BeamEquilibrium(material, A=None, Jx=None, Iyy=None, Izz=None, k=0, name='', nlgeom=False, space=None)
Weak formulation of the mechanical equilibrium equation for beam models.
Geometrical are implemented with the updated lagrangian approach.
- Parameters:
material (ConstitutiveLaw name (str) or ConstitutiveLaw object) – material can be either a Beam constitutive laws or a material constitutive law with attributes E and G for elastic and shear modulus (for instance
fedoo.constitutivelaw.ElasticIsotrop
). If material is a beam constitutive law, the following parameters A, Jx, Iyy, Izz and k are ignored.A (scalar or arrays of gauss point values, optional) – Beam section area.
Jx (scalar or arrays of gauss point values, optional) – Torsion constant.
Iyy (scalar or arrays of gauss point values, optional) – Second moment of area with respect to y (beam local coordinate system).
Izz (scalar or arrays of gauss point values, optional) – Second moment of area with respect to z (beam local coordinate system).
k (scalar or arrays of gauss point values, optional) – Shear coefficient. If k=0 (default) the beam use the bernoulli hypothesis.
name (str) – name of the WeakForm.
- __init__(material, A=None, Jx=None, Iyy=None, Izz=None, k=0, name='', nlgeom=False, space=None)
Methods
Return the list of all weak forms.
BeamEquilibrium.get_weak_equation
(assembly, pb)BeamEquilibrium.initialize
(assembly, pb)BeamEquilibrium.nvar
(self)Return the number of variables used in the modeling space associated to the WeakForm.
BeamEquilibrium.set_start
(assembly, pb)BeamEquilibrium.sum
(wf1, wf2)BeamEquilibrium.to_start
(assembly, pb)BeamEquilibrium.update
(assembly, pb)BeamEquilibrium.update_2
(assembly, pb)Return the name of the WeakForm.
Return the ModelingSpace associated to the WeakForm if defined.
Method used to treat the geometric non linearities. * Set to False if geometric non linarities are ignored (default). * Set to True or 'UL' to use the updated lagrangian method (update the mesh) * Set to 'TL' to use the total lagrangian method (base on the initial mesh with initial displacement effet).